The 'Fossil Forests' of Nova Scotia: 
A Review of the Literature
Part Two

Further Implications of the in Situ Theory:
Coffin provides additional difficulties with an in situ interpretation for the Joggins and Sydney strata.  For example, when studying these locations he discovered that:

"Just  under 70 percent of  the hollow vertical  tree  trunks contain  different bedding than the surrounding matrix.  We could postulate that  some activity completely removed the original matrix and replaced it by another or moved the stumps to a new location after the infilling, but neither possibility is compatible with the in situ theory." 73

Two examples of this phenomenon are figures 19 and 229 below. 

Upright tree filled with sediments that are different than those surrounding it. No visible traces 
 of roots. Another upright tree with 
 different internal sediments that those around it.
Fig. 19.  A five foot "Section  of the  cliffs  of the  South Joggins, near Minudie, Nova Scotia.  No part of  the original  plant  is  preserved except the bark, now a  tube of pure bituminous coal, filled with sand, clay, and other deposits, ...  forming a solid internal  cylinder  without traces of organic structure."  74 

"Fig. 229.  Erect  tree-trunk (a a)
  imbedded in sandstones (c c)  and  
  shales  (d d),  its   interior filled   
  with different sandy  and clayey 
  strata  (e e),  and the  whole 
  covered by a sandstone  bed  (b)"

With regard to Fig. 19, Lyell also tells us that:

"The strata in the interior of the tree consisted of  a series entirely  different  from those on the outside.  The lowest of the three outer beds ... consisted of  purplish  and  blue shale, c,... two feet thick, above which was sandstone, d, one foot thick, and above this clay, e, two feet eight inches.  In the interior, on the other hand, were nine distinct  layers  of  different composition:  at the  bottom,  shale four inches;  then, in the ascending series,  sandstone one foot, shale  four inches  sandstone four inches,  shale eleven  inches, clay  with  nodules  of  ironstone,  f, two inches, pure clay two  feet, sandstone three  inches,  and  lastly, clay  four inches." 76

Lyell goes on to say that: "In some of the layers in the inside of  the trunk, a, b, fig. 19,  and in other trees in this line of cliffs, I saw leaves of  ferns and  fragments  of plants which had fallen in ... with the sediment." 76 **

And that: "It is not uncommon to observe in Nova Scotia, as in England, that the layers  of matter in the inside are fewer than those without.  Thus a 'pipe' or cylinder of pure white sandstone, representing the interior of a fossil tree, will sometimes intersect numerous alternations of shale and sandstone." 76  **

The fact that many upright trees in this strata have different bedding than that which surrounds them suggests that they were transported before burial.  It  also appears (from the drawings above) that these two trees do not have attached  roots-- again suggesting that they are not in situ.  Note also that Lyell's stump has its base directly over a bed of shale, as opposed to coal. 

Another example is the tree below -- that was also said to be  in situ.  This tree was located about 12-16 feet below the Sydney Main Coal-Seam and had both roots and rootlets attached.

An Upright Tree with Attached Rootlets:

Upright tree stump 
    with roots and rootlets attached.  This tree is also filled with different sediments than those 
    surrounding it.

This table applies to Fig. 1 below.
o.  Strong white sandstone.....4 ft. 0 in.
n.  Slaty blue shale....................2 ft. 0 in.
m. The main coal seam..............6 ft. 0 in.
l.  Soft fire-clay...........................2 ft. 0 in.
k.  Indurated clay.......................6 ft. 0 in.
i.  Slaty shale...............................1 ft. 3 in.
h. Slaty gritty shale....................5 ft. 0 in.
g.  Soft blue clay........................0 ft. ½ in.
f.  Dark slaty gritty shale...........4 ft. 0 in.
e.  Soft clay and coal mixed.......0 ft. 3 in.
d.  Fire clay..................................3 ft. 2 in.
c.  Carbonaceous matter...........0 ft. ½ in.
b.  Indurated clay.......................2 ft.  4 in.
a.  Strong sandstone.................8 ft.  0 in.

After Brown, Geol. Soc. Lon. Quart. Jour., 1846, vol. ii,  p. 395, Fig. 2

View of cliff-face showing relative position of (above)
  the tree to the surrounding strata.
After Brown, Geol. Soc. Lon. Quart. Jour., 1846, vol. ii, p. 394, Fig. 1.

At first glance, the tree in fig. 2 does appear to be (buried) in growth position,  since it has both  roots and rootlets attached.  Closer inspection  reveals  that  it  is  probably  not in its original growth  position. For example, the "dark slaty gritty shale" (f in Fig. 1)  surrounding the roots appears to extend half-way up the two trees on the left.  This suggests that it may not be an ancient soil but rather simply the type of strata (i.e. layered mud) that entombed these trees.  Note also that the "slaty gritty shale" (h) above it buried  not only the stumps, but also (what appears to be)  their flattened tops as well. This suggests that their burial may have been quite rapid.  With regard to these two shales Brown tells us that:

"... with the exception of  the  thin layer of clay, g, there are no appearances of distinct surface lines in the beds  f and h, although the eight trees have clearly grown  upon at  least five different levels ..." 77 **

Since the "soil" that surrounds the roots of these trees is virtually no different  than  the  strata  that  buried them, perhaps it isn't a "soil" at all, but rather simply a sedimentary deposit that buried them while (they were) floating upright.

Perhaps more telling is the fact that the above tree in Fig. 2, along with its roots, is: "filled with a fine-grained greyish white sandstone." 77  **

In other words, the sediment inside this tree is different than that which surrounds it.  Also of significance is the fact that none of the sediments above the tree consist  of greyish white  sandstone.  This is evident from the list of strata types given above (next to Fig. 2).  This also strongly suggests that this  tree is not  in its original position of growth, but rather has been uprooted and  transported to this location  where it sank to the bottom and was buried in beds of layered mud and clay.  Some may say that since it was filled with sandstone then it couldn't have  been  transported -- because it  would  have been too heavy.  However, if we look closely at Fig. 1, we can see what appear to be the tops of  these  trees still intact  and attached.  This  is  significant  and  may explain how such a  heavy  tree could  have been  transported by strong currents (see Part 1: Horizontal Shear).

Another reason to doubt that any of the above trees (in fig. 1) are "in situ" because of what Brown said about beds f, h, and g. Consider his comments below: 

"The superincumbent beds, f and h (separated by the thin layer of  blue clay, g), in addition to the upright stems with their roots and rootlets attached, growing at different levels, contain also vast quantities of flattened stems of Sigillariae, Calamites and Lepidodendron, lying in ... oblique and horizontal positions and a great variety of Ferns, & c. Immediately  under the roots of one of the trees I found Neuropteris cordata with basal leaflets, two species of Sphenophyllum two of Pecopteris, Sphenopteris crenata, Asterophyllites, and Pinnularia capillacea." 77 **

He also tells us that:

"All the upright stems apparently belong to the  same species, and are evidently young  individuals, ranging  from  two to  sixteen  inches in diameter only." 77  **
The fact  that oblique stems and leaves were preserved in  this  strata, and that such leaves were from many different trees,  while the trees themselves were of  the same type is  suggestive of transport.  And the fact that the tree in fig. 2 was filled  with sediments  unlike any  that  surrounded  it strongly suggests that it didn't grow here, but rather was transported.  This, coupled with the fact that there are no distinct soil surfaces in sections f--h suggests that none of the upright trees in the above drawing  are in situ. 

Facts Omitted: The above tree also  provides  (perhaps) the  best  example of  Dawson's  bias,  since  he used a replica of Brown's drawing of Fig. 2 (above) in an attempt to persuade  his  readers  that  the  erect trees in the Joggins and Sydney strata are in situ.  This can be said  for  several  reasons.  First  because  he  made the claim 78 that it was in situ without even providing  a  specific reference.79  Second,  because  he didn't give any details: i.e. he didn't mention that it was filled with sediments unlike those surrounding it;  nor did he mention that other  trees in  this  strata  were  inclined; nor did  he  say  anything  about  the  various  different leaves that were found under one of  these trees.  Third,  because  he omitted  (from his writings) various other drawings provided by Brown that clearly show upright trees and plants with  their roots missing.  And fourth, because Dawson claimed that the Sydney area strata "occur in circumstances very similar  to those of the erect trees at  the Joggins ..." 80 Also, to be fair to Dawson who is not here to defend himself, it is possible that he only received a drawing of the tree in the mail -- as opposed  to  the Brown's entire article, or that he perhaps never actually read any of Brown's articles: something that seems unlikely when considering his position and close contact with the London Geological Society.

In other words, since Dawson couldn't find a similar tree with attached roots and rootlets from the Joggins vicinity  that  he deemed worthy to depict, why not use one from the Sydney area and simply state (as Brown had done) that because it had attached roots, and was upright, that is must have been  in situ, and that the circumstances which created the strata in these locations were very similar.  This may also explain why Dawson didn't publish any drawings of the numerous drift trees that he observed at various locations in the Joggins strata, for to do so might have given his readers the (unwanted) impression that none of these trees are "in situ."

Note: Although, Dawson did provide a drawing of what he called "drift",  it didn't portray drifted trees, but rather what he termed "drift" rocks. However, in spite if his bias, Dawson is to be commended for providing us with a number of very detailed cross-sectional drawings of upright trees and tree stumps -- something which other authors (i.e. Goeppert, 1848) didn't do.  He is also to be commended for providing detailed descriptions of a very large section of the Joggins strata, and much additional information regarding the fossils that are found in this area.

Overlapping Trees: 
Concerning such phenomena Coffin says:

"The presence of overlapping, erect  trees seems to preclude the amount of time needed for normal growth... The major portion of the lower trunk would have protruded above ground during the entire life of  the upper tree if both are in growth situation.  Sandy mud  filled the hollow  interiors of both when it buried them.  The trees were three meters  apart,  and the  nearly horizontal bedding,  easily traceable between them, negates the suggestions that they  grew simultaneously on an even surface." 82

Conifers and Drifted Trunk Deposits:  
Dawson records finding four different species of conifers (of the genus Dadoxylon) in the Joggins strata.  The circumstances surrounding their burial were so obvious that Dawson, himself, referred to them as "drift" deposits.  These consist of large trees or tree trunks that are buried in prostrate or oblique positions in relation to the surrounding strata.  With the exception of the Fossil Trees of St. Etienne (and those "reclassified" as drift deposits in this paper), the image below was one of the few such (clearly indicated) deposits found by the author.  It is from a German publication.  Another image of "clearly indicated" drift trees is found in a book by Schuchert.

   After Kluseman, Von H.,
   Natur und Volk, Band 84,
   Nov. 1, 1954, Heft 11, pp. 

    Lady-bug Format

Rarely Erect: Conifers are found in many parts of the Joggins strata; however, they are rarely erect, but rather usually prostrate or oblique with regard to the surrounding strata, and are in what are called "drift" deposits. 83 Although Dawson mentioned finding such Coniferous "drift" trees in a number of locations in the Joggins area strata, he apparently didn't think they were of significance: at least as far as drawing a picture of them for his readers to observe and consider what such a finding indicates: and even though this is apparently their normal state.  Instead he chose to publish one that was erect -- such as the first tree pictured in (Part 1 of) this paper.

Regarding these deposits Dawson tells us that:

"...D. Acadianum, is found abundantly at... Joggins  in  the  condition of drifted  trunks imbedded in the sandstone of  the lower part of the Coal-formation  and the upper part of  the Millstone-grit series. " **

In addition Dawson informs us that:

"From the abundance of coniferous trees in  the sandstones above and  below the coal, and their comparative absence  in the coal  and coal-shales, it may be  inferred that these trees belonged rather to the uplands  than to  the  coal swamps;  and the  great durability and  small specific gravity of  coniferous wood would allow it  to be drifted, either  by rivers or  ocean currents, to very great distances." 83 **

And that such trees:

"... are most abundant in those parts of the section where  the swamp conditions of  the coal measures  ... disappear and  where drifted plants predominate over those which have grown  in  situ... The prevalence of coniferous trees as drift-wood in the sandstones, above and below the  Coal-measures, is  probably ... attributed to their capability of floating  for a  long time without becoming water-soaked  and sinking." 84 **

Leaves Present but Bark Missing:  The conifers of  Joggins are often  found as "decorticated and prostrate trunks." 85  In other words, they are missing their bark.  In fact, of  all the Corditalean trees at Joggins that were examined by Scott et al., none  were found with their "periderm" or bark intact. 86   This was in spite of the fact that fossil leaves occur in  the same  deposits as these trees.86  Austin  proposed that decortication could occur as a result of trees (in the form of log mats) rubbing against each other as they were transported by turbulent waters. 87, 88 

Organic Material Intact:  In addition to the above, Scott et al. report that the organic cell walls of some trees are still intact. 89 Dawson also reported finding similar organic material in fossil trees at Wallace Harbor. 90 With regard to this Dawson  noted that after the calcareous mineral matter (filling the pores) was dissolved with hydrochloric acid, what was left was a piece of wood retaining the same size and shape as the original -- only now it could be bent or burned in a fire just like ordinary wood. See also the unfossilized trees of  Axel Heiberg and Ellesmere Islands and Carbon 14.

Observations: The fact that the periderm (or bark) is missing tells us that something stripped these trees of their bark before they were entombed in this strata -- thus implying that they were drifted in from a distance--as both Dawson and Scott readily admit.  The fact that (fossil) leaves are found ( in the strata) along with these trees is suggestive of rapid burial.  The fact that organic material is present in any specimens suggests that they are not hundreds of millions of years old but rather (more likely) only a few thousand.

Ancient Peat Lands  Or  Organic Sedimentary Deposits?
One of the most significant aspects of the Maritime strata are the multiple seams of coal.  Joggins alone has about 80 different coal seams -- ranging from thin films to seams that are 2.5 feet thick.   Are these the remains of multiple forests that grew in place, or is there a more plausible explanation? 

Many geologists believe that coals were formed as a result of multiple forests which grew in stagnant swamps.  In the case of the Joggins area, these forest-swamps are said to have been drowned over and over again by flood waters, as the land repeatedly subsided at about the same pace that new sediments were being laid down. 91   They believe that the plant matter found in such  coal grew in (or near) that location.  This view is called the   "Autochthonous"  method of coal formation.  For example, Lacefield states that:

"As plants died, their remains fell onto swampy  floodplains  and  settled  into lowland mires. Plant material  under these  conditions would accumulate  as  thick  blankets of peat... because the stagnant water would  be too low  in oxygen  and  too  acidic to support bacterial growth necessary for decay. The resulting peat layers  were  then buried under  layers  of  sand, silt, and mud.  This allowed  the final  stage  of  coal formation  to  proceed --  physical  and  chemical  alteration of  the organic  material through the pressure and heat generated by burial for an extended period of time." 92

This belief is still held by many geologists today.  It postulates that the plants which grew in such (ancient) swamps, --after many hundreds (or thousands --?) of years-- accumulated into thick beds of peat, which were buried under sediments, and then, after many more hundreds (or thousands --?) of years, as a result of heat and pressure turned into coal.  This method of coal formation requires long periods of time simply because of all the time it would have taken for all of those forests upon forests to grow.

Other geologists believe that coal seams were formed as the result of plant material being uprooted, carried off by flood waters, and subsequently reburied by sediments.  This view is known as the  "Allochthonous"  (or drift) method of coal formation.  It does not require long periods of time to account for such (multiple) deposits of coal. 

Evidence for the Autochthonous (Peat-Swamp) Theory of Coal Formation:
Upright Trees
When the base of an upright tree is imbedded immediately above a coal seam it is almost  always assumed to be in growth position--even if no discernible roots are found attached to it.  In this case the roots are assumed to be hidden in the seam, even though its base may be very large and the seam quite thin.93 The tree to the left, above Coal 50, in the illustration below is one such example. 

After Brown, 1849, Quart. J. Geol. Soc. Lon., Vol. 6, p. 129, Fig. 5. Sydney area, Nova Scotia.


Underclays: In many cases coal seams are resting on top of what is termed an "underclay."  Such beds may consist entirely of clay, or, as is more often the case, of shale, or sandstone, or a mixture of these; sometimes they even consist of limestone (ref. 125)  However, to properly be termed an "underclay" it must contain rootlets.  Underclays are sometimes referred to as "seat-earths," or soils.  They are thought to represent ancient beds upon which the swamp/forests grew.  Dawson believed that: 

"The occurrence of Stigmaria under nearly  every bed of coal, proves beyond question that the material  was accumulated  by  growth in  situ, while the character of  the sediments  intervening  between  the beds of  coal  proves with equal certainty  the  abundant  transport of  mud and sand by  water.  In other words, conditions  similar  to  those of  the swampy deltas of  great rivers ..." 94 **

Dawson further believed that the:

"Stigmaria-underclays... furnish the key to the whole  question of the origin of  coal, and that the comparisons of  Coal deposits,  by Sir Charles Lyell, with the  'Cypress-swamps'  of  the Mississippi perfectly  explain all  the more important appearances  in the  Coal-formation of  Nova  Scotia." 94  **

Banded Seams: Coal seams are quite often banded or layered.  Such laminations are believed to represent multiple forests that grew one on top of one another.  

Lack of Upright Fossils: Instances of upright trees that traverse coal seams are not supposed to occur.  This is because coal is believed to take hundreds (if not thousands) of years to accumulate from beds of peat- growth, and thus any trees that might have protruded through the pre-coal (peat) should have fallen over and decayed during the time it took the seam to form.  Yet such trees, though rarely documented, do occur, and will be discussed shortly.

Absence of Sulphur in Underclays: According to Dawson, the underclays have an:

"absence of sulphurets, and the occurrence of carbonate of  iron in connexion with them, prove that, ... rain-water, and  not sea-water,  percolated  them." 94

This autochthonous (in situ growth) theory is believed by many geologists today to be the correct interpretation of how coals were formed.  It is also the only view that is compatible with evolutionary philosophy.

Evidence for the Allochthonous / Drift Theory of Coal Formation:
Truncated or Missing Roots:
The overwhelming majority of upright trees and tree stumps in this strata have truncated or missing roots and rootlets.  For example, in the drawing by Brown above there are two trees embedded at the base of underclay No. 52.  Note that none of their roots are visible in shale No. 51. This is significant since shale is thought to be an ancient soil, and because in many other instances, Stigmaria roots and rootlets are preserved in shale.  It is also significant because there is no coal seam present whereby the roots might be concealed. 

Absence of Large Roots: Another indication of catastrophic deposition for the Joggins strata is that few  "underclays" possess large roots with (or without) intact rootlets.  For example, there are only a few beds where Dawson records finding large roots of Stigmaria.  One of these is in limestone.  Concerning this section of strata Dawson wrote:

"Coal Group 31:   Gray sandstone.
                                 Coal and coaly shale, 1 foot.
                                 Underclay, Stigmaria, 1 foot.
                                 Coaly shale, 6 inches.
                                 Coal 2 inches
                                 Argillaceous underclay, Stigmaria."

He also provides the following details:

"The roof  contains Sigillaria, and  the coal has flattened  impressions of  the  same.  This  bed is remarkable as having a  roof  of  sandstone.  Its  underclay is  also peculiar.  It is about 9 feet in thickness, and  contains Stigmaria and nodules of  ironstone throughout.  It rests  on a  bituminous limestone containing Naiadites and scales of  fishes, and also large  roots of Stigmaria ... This bed gives more colour to the idea of Stigmaria having grown under  water than any other  bed  at the Joggins." 95 **

Here is one of the few instances where Dawson records finding  "large roots of Stigmaria" in the Joggins strata; however, in this case they are not in the "underclay," but rather  under  it in a bed of limestone.  In addition, as far as we know, these (large) roots were not attached to trees, nor did they possess attached rootlets. 

Notice also that the larger roots were found below the smaller rootlets.  This is the opposite of what we would expect if such roots were  in situ;  for if this were the case then the larger roots should be above the smaller rootlets.  They should also have rootlets attached, but, as far as we know, they don't. 

Lack of Distinct Soils: An absence of distinct soils around rootlets and under trees suggests that such beds are not "soils" at all.  Regarding this, we again note Coffins' remark :

"Only a small number of vertical trees  arise from coal.  The majority originate in shale or sandstone,  which exhibit no change in texture or organic content." 96 **

Over and over again, when observing this strata, distinct soils are missing.  For example, in Brown's  drawing (1849, p.357) of the stump above the Sydney Main seam there is no distinguishable difference between the layering of the "shale without fossil plants," that is said to be a "soil,"  from the shale immediately above it. 

Dawson noticed this as well.  Consider his remarks from the 1868 Edition of Acadian Geology :

"Subdivision IX is a ... series  of  underclays and coals, alternating with mussel beds. It contains seven distinct soil- surfaces, the  highest  supporting an erect tree, which appears as a ribbed  sandstone  cast, five feet six inches  high, nine  inches in diameter at the top, and fifteen at the base, where the roots  began to  separate...  Five of the underclays support coals, and in three instances bituminous limestones have been converted into soils none  of  which, however, support coals. The  last of  these... limestones  is a very remarkable  bed.  First, we have an underclay; this was submerged, and  Spirorbis  attached its little  shell to the decaying trunks, which finally  fell  prostrate, and  formed  a  carbonaceous bottom,  over which multitudes of  little crustaceans  (Cythere)  swam and  crept, and  on  which  fourteen inches of calcareous and carbonaceous matter were gradually  collected." **

"Then this bed of organic matter was  elevated  into a soil, and  large  trees, with  Stigmaria roots, grew on its surface.  These were buried  under thick beds  of  clay and sand, and  it  is  in the  latter that the erect tree already mentioned  occurs;  its roots, however, are about  nine feet above the surface of  the limestone, and belong to a later and  higher terrestrial surface, which  cannot be distinguished  from the clay of similar character above and below." 97 **

In the first paragraph Dawson refers to the surface supporting this tree as a "distinct soil."  In the second he tells us that the sediments surrounding its base "cannot be distinguished" from those above or below it.  Such assertions cause  doubts to arise with regard to Dawson's objectivity -- especially his conclusion that these were "soils."  The fact that they are indistinguishable from the strata which buried the tree is a clear indication that they are not  "distinct";  if  they were, then  there  should  be  an  observable  difference between the "soil" that enclosed the roots vs. the sediments that buried the remainder of this tree. 

Note also that although Dawson tells us that this tree appeared as "a sandstone cast, five feet six inches high,"  he does not say how deep it was buried in the clay.  For all we know it may have been several feet.

Vegetation: While the type of vegetation in this coal offers some support for the forest-growth (autochthonous) theory;  this same evidence raises questions as to whether such a forest ever was a swamp.  This is because Conifers do not grow in swamps, nor do ferns.  Regarding this Dawson states that:

"The  Sigillaria grew on the same soils  which  supported Conifers, Lepidodendra, Cordaites, and Ferns,  plants which could  not have  grown in water..." 98   And, "with  the exception, perhaps, of some Pinnulariae and Asterophyllites there  is  a  remarkable absence  from  the Coal  measures  of  any form  of  properly aquatic vegetation." 98

Although there may be a lack of what Dawson calls "properly aquatic vegetation" in these coal measures, there is abundant evidence of aquatic life, such as crustaceans, clams, fish, and marine tubeworms. 99 

However, Dawson's statement is questionable for other reasons as well.  For example, almost all Coniferous trees in the Joggins strata are found in the form of fossil logs buried in drifted Channel Deposits. 100  With the exception of  leaves and (perhaps) bark, their remains are not found in the coals themselves -- except for small pieces found in coal balls.  Dawson here takes aim at those who had previously proposed that Sigillaria and Lepidodendrons were aquatic (i.e. that they grew in water).  This view was first proposed by Brongniart, 101 and was later espoused by Binney. 102   More recently, Scheven 103  has proposed that such trees were not only aquatic, but comprised what he terms "Floating Forests."   Scheven later discovered that he was not the first to propose such a view; for Kunze104 had done so over 100 years prior.  Such a view would allow for much larger forest areas than are currently available on the Continents alone.  However, since no Sigillarias or Lepidodendrons exist today (other than as fossils), we may never know for certain whether or not this was the case.

Abundance of Fragile Fossils: According to Dawson, 105  56 coals at Joggins contain leaves of one or more of the following types: Asterophyllites, Cordaites (previously Poacites), Cyperites, Alethopteris lonchitica, Pecopteris lonchitica, Lepidophylla, and "vascular bundles of ferns."  Dawson also informs us that at least two of the Joggins coals are composed almost entirely of leaves. 106 This is also suggestive of a rapid organic sedimentary deposit -- as opposed to that of fossil soils.

Varying Lamina within Seams:   Dawson also records the following details about  "Coal Group 12", a one foot thick multilayer  "Coal and coaly shale." 

"The coal has in  one layer much Cordaites,  in  others it includes an immense number of  specimens of  Sporangites papillata; it has also bast tissue, epidermal tissue, and discigerous tissue." 107

If such a seam resulted from a single forest, then we would not expect to find individual lamina with leaves, but rather many.  Such fossils would only be preserved if they were buried rapidly, or perhaps slowly if the environment was anaerobic.  In this case, however, since it represents a single layer among many different layers, the rapid burial scenario is (perhaps) the most likely.   If, on the other hand, these coals resulted from "stagnant swamps" under anaerobic freshwater conditions, then we would not expect to find bivalves with marine tubeworms attached.  For example,  consider Dawson's  account of Coal Group 18--an eight inch thick laminated coal:

"The coal is shaly and laminated.  It contains  much Cordaites, also Lepidodendron, Calamites, and  Alethopteris lonchitica.  In one layer there are Naiadites, Spirorbis, and scales of fishes." 108  **
This phenomenon was also described by Duff and Walton, who -- with regard to a section of Logan's Division 4 -- reported that:
"A remarkable feature of the coals is their occasional interbanding with limestone of calcareous shale.  The  boundaries  of  the coal and  limestone are usually  sharp;  very thin  laminae and  even  isolated  shell  layers  (bivalves) can be seen  along parting planes in the coal in thin sections." 109  **

Finding alternating (and/or isolated) layers of limestone and coal--along with fragile fossils of leaves  and isolated layers of shells with marine tubeworms is, again, more consistent with the rapid deposition of drifted (organic) matter than with the concept of multiple slow growing forests which grew on mud-flats, limestones, and peat.  Also, according to Price, 110  few trees are known to grow on a peat surface, and even those that do must have their roots in an earthy type of soil, as opposed to (only) the peat.   However, such may not have been the case with the Sigillarias and Lepidodendrons (that comprise much of the Carboniferous coals), as their radiating roots are typical of modern aquatic plants.

For more on how coal seams were formed see: Upright Trees in Coal.

What About Sydney?  With regard to fragile fossils in the strata near Sydney, Dawson makes the following comments:

"The Sydney Coal  measures contain not only erect trees, but also numerous with Naiadites, Cythere, Spirorbis, Fish-scales, etc.;  though these do not so frequently overlie  coal-seams  as  at  the Joggins.  The  shales  at Sydney are also much more  rich than those at the Joggins in leaves and other more delicate parts  of  plants..." **

"Wherever erect trees occur ferns, Asterophyllites, Sphenophylla, and other delicate leaves, are found in the greatest abundance... having  been covered up by successive layers of fine mud, deposited at frequent intervals ...  In these localities single fronds of ferns are sometimes found  covering a  slab  of  shale... as  sharp and   distinct in their outline as if  the had been  gathered  only yesterday  from a recent  fern, and spread out with the greatest possible care, not a single leaflet being wanting. 111 **

Upright Tree with Sedimentary Coal:  Coffin discusses a tree which had its interior filled with coal for a distance of three feet.   The tree itself was imbedded in sandstone.  Its lowermost portion was filled with sandstone; however, above this it was filled with coal.  Consider his remarks below:

"One short section of  cliff  near Sydney Mines  constitutes a good case history to illustrate several of the above points.  One large, upright petrified  tree (probably Sigillaria) originates in the  same  bed  where compass measurements established  the  parallel orientation of  Stigmaria with one another and with the dominant current.  Thus,  if  the Stigmaria were not in growing position it is doubtful that the tree  would be.  The erect  tree passes through a  bed of  shale 1.5 meters  thick that contains  abundant quantities of exquisitely preserved  fern  leaves -- good evidence of rapid sedimentation.  Sediments  approaching that of  crude  coal  fill about  a meter  of  its length.  No corresponding one - meter - thick  bed of  coal exists  outside the tree, but directly above the  broken top we do notice a seven- centimeter seam of the dark-gray deposit.

"Apparently when the material  washed out  over the  surface, it  filled the upper meter of the hollow tree.  In this case it is  obvious that the thin organic layer lying directly over the tree  cannot be a growing level but rather a  water  laid deposit."  112 **

Upright Trees in Coal:  Documented and detailed instances of trees that transcend coal seams are somewhat rare; however, such trees do exist and may, in fact, be common.  Below are two such cases from the Sydney area on Cape Breton Island, Nova Scotia.  The first instance involves the three trees above coal No. 172--a nine inch seam.  It appears that these trees are crossing another seam about 2 inches thick.  We cannot be certain of this (thickness) because it is not given.  All we are told is that section 173 is 5 inches thick and is composed of "argillaceous shale containing layers of coal". 113, 114

After Brown, 1849, Quart. Jour. Geol. Soc. Lon., Vol. 6, p. 130

The second instance is between sections 182 and 183 in the same drawing (above).  Here we see a large tree with roots that cross a coal seam.  Regarding this tree we are told that it is: 

"18 inches in diameter...,  with strong roots  penetrating downwards  at an  angle  of 45  degrees, and piercing through the three-inch layer of  mixed  coal and  shale No 182." 114  **

Note: Brown's number 182 is positioned incorrectly.  It should be shifted to the right so that it is next to No. 183 (a 4 ft. Arenaceous shale with erect trees, plants and Stigmaria). 

Two other examples of upright trees in coal are reproduced below; the first is from a book by Bölsche that is in German.  The author does not tell us where it is from; however, more than likely it is from Germany, since there are many coal seams there.  The second is from a book by Williamson on the subject of Stigmaria.  Note that in Williamson's drawing there are no visible traces of roots even though the tree is sitting atop a laminated Fireclay.

       Querschnitt durch 
      der Steinkohlenzeit
      mit aufrecht 

     Which means: 
      through rock 
      strata of the coal 
      period with 
      upright fossilized
      tree stumps.


After Bölsche, Wilhelm, Im Steinkohlenwald; 1906-- (Various Eds.), p. 35

Williamson, William C., A Monograph on the Morphology and Histology of Stigmaria Ficoides, 1887, p. 13.
A Full Size Image is here

High Sulphur Content: Dawson, noted at least 12 instances of coals (near Joggins) that are either  pyritous, or contain pyritized fragments of wood -- an indication of high sulphur content.  Dawson also recognized this as an indication of marine influence. For example, with regard to Coal Group 4 of Division XXVII he states:

"The upper shales and  coals are very pyritous, and decompose when exposed to the weather -- an  indication  that sea-water  had access to these beds, while the vegetable matter was still recent." 115  **

Gilbing concurs with this view.  Consider his remarks below:

"I am pretty sure that marine influence was active at  Joggins.  In addition to the  forams and trace fossils (1995  paper),  Sr  isotopes  on fish bone  material are suggestive of  marine /  estuarine  influence   (John's  1998 paper).   Also, mud  drapes  at one level  include some  paired  drapes, which is suggestive of tidal activity The  coals  are  rich  in  sulphur, especially pyrite -- a  marine sulphate  source?" 116 **

Further evidence of marine influence is reported by Skilliter, who said that:

"The 1433 m thick section exposed in the  cliffs at Joggins,  Nova Scotia has long been held to have formed in  a fresh-water, continental basin.  Recently, the possibility  of periodic, distal  marine influence has been inferred  for... part of the  section  from the trace  fossil and  microfossil record.  Multidisciplinary data  from a further detailed investigation of ... 65 m of strata  supports this inference ... Palynological,  geochemical, and petrographic data indicate  the Forty Brine coal seam originated as  a  minerotrophic  mire  of  elevated  pH;  enriched  sulphur (up  to 19%)  is suggestive of  marine water  influence.  This re-interpretation has implications for the accepted paleoecology of the aquatic fauna, and for predictive stratigraphic modeling of similar 'continental' basins." 117 **

Structure of Carboniferous Coals: With regard to the "microscopic texture and structure of coal," Nevins makes the following comments concerning a study by Cohen.

"A. D. Cohen initiated a comparative structural  study between  modern autochthonous  mangrove peats  and  a rare modern allochthonous beach  peat from southern Florida.  Most autochthonous  peats had  plant fragments showing random orientation with a  dominant matrix of finer material, while the allochthonous peat showed current orientation  of  elongated  axes of plant  fragments generally parallel to  the beach surface with a  characteristic  lack of  the finer  matrix.  The  poorly sorted  plant debris in  the autochthonous  peats had a massive structure due to the intertwining mass of roots,  while the allochthonous  peat  had characteristic microlamination due to the  absence of  inter-grown roots." 118  **

Nevins then quotes Cohen as follows:

"A  peculiar  enigma which developed from study  of the allochthonous peat was that vertical microtome sections of this material looked more like thin sections of Carboniferous coal than any of the autochthonous  samples  studied." 118, 119 **

Note about Underclays:  George M. Price, in his book "The New Geology" quotes Arber as follows, with regard to underclays:

"Professor E. A. N. Arber, of Cambridge University, has given us some very enlightening remarks about the 'underclays.'  He says that 'nothing could be more unlike a soil, in the usual sense of the term, than an underclay.'  ("Natural History of Coal," p. 95)  He further points out:  'Not only are fire clays commonly found without any coal seams above them, but they may occur as the roof above the seam, or in the seam itself... Sometimes coals occur without any underclay, and rest directly on sandstones, limestones, conglomerates, or even on igneous rocks.' -- P. 98.  'Another difficulty in connection with the underclays is that their thickness commonly bears no relation to the extent of the seam above.  Often thick coals overlie thin underclays, and vice versa.'"

"Regarding the many instances of upright stems, this author argues that -- 'These stems in some instances are certainly not in situ.  Examples have been found which are upside down, and in some districts the prone stems far exceed those still upright.  No doubt the majority, if not all of these trunks have been drifted.' -- P. 114." (Price, p. 464)

Observations: In the opinion of this writer the evidence favors an allochthonous (or drift) origin for the Carboniferous coals -- as opposed to the popular Peat-bog / growth-in-place theory which is still taught in many institutions of higher learning.  See also The Origin of Coal,  Coal: How Did it Originate,  Conifers and the Coal Question, Geology and the Age of the Earth;  Brown Coal Mining in Germany,  Coal: It's Occurrence and Origin, Appendix A: The Underclays of Joggins

The Fragmentation of Stigmaria:
While studying the Coal strata of Nova Scotia, Professor N. A. Rupke also concluded that the strata that contains Stigmaria roots and upright trees is not representative of  in situ growth and burial but is of allochthonous origin.120  His conclusions were based on the the following:

1. Preferred orientation of Stigmaria axes,
2. Fragmentation of Stigmaria,
3. Filling of fragments with different sediment than that which surrounds them,
4. Evidence of rapid burial.

With regard to these roots Rupke stated that:

"In  most cases, it was  quite difficult to trace  a  Stigmaria  specimen over its entire length  through the enveloping rock, especially when it  was cropping out in  cross section.  Nevertheless,  for a  good many specimens, it could be established that they were but fragments, that is,  no longer connected with a tree  stem  and quite often with the finer end broken off." 120  **

Rupke also noted that :

"beds with upright trees often  contain Stigmaria, sometimes spread through the entire thickness of the bed." 120                                       

When challenged by Ferguson, 121 Rupke responded by providing more details.  For example, Ferguson suggested that the Stigmaria fragments in question were perhaps still connected with trees (that were)  hidden in the cliff, or that the trees had eroded away.  To this Rupke gave the following response:

"1. For a  few  specimens it was possible to  trace  both ends  into the rock,  since  they  were sub-parallel to the cliff  face and slightly bent so that only their outward bend was exposed. Both ends were found to  terminate abruptly, without any connection with a tree.

2. The stigmarian beds  on  Cape Breton Island are  traversed  by  several  upright trees that start at the bottom of  the  beds.
  The Stigmaria specimens occur  throughout  the entire  thickness of  the beds, although for  the  greater part  in  the upper half.  Nowhere was an upright tree  found  that  starts  in the upper half  of the beds or somewhere else  within  them.  In case the Stigmaria specimens are still connected  with trees, one should find some evidence that trees  do begin  at some level within the stigmarian beds.  Moreover, most  of  the upright trees that are actually  seen  in the  cliff  face stand  on an underclay, a coal seam or a  carbonaceous  layer.  If  the  Stigmaria  specimens  are still  in situ and  thus  representative  of a succession of  forests, one  should find carbonaceous layers or  some other indication of soils within the  stigmarian beds. Evidence  for  this,  however,  is absent;  on the contrary,  well  developed and completely  undisturbed cross-bedded  units can be seen in many places in  these beds. 
Consequently,  the  contention  that  it  is  fragments  of  Stigmaria  that are dealt with and not in situ occurrences seems beyond doubt." 122 **

Other authorities have made similar remarks.  For example, in the only book ever published on the subject of  Stigmaria, Williamson  said:

"Having so many proofs that some of the examples of  Stigmaria  discovered  in the fireclay or seat-bed are the downward extentions  of  Sigillaria and Lepidodendroid trees,  it  surely   can  no  longer be doubted that the  fragments of  this identical Stigmaria  ficoides  with  which  that  clay is  so constantly  filled must  also  be  portions of similar roots.  Such  fragments, both of roots  and rootlets, are extremely  abundant.  Indeed it is rare to find a  fireclay  in which such  is not the case, but how these roots have so often become  disturbed  and broken up is  a question not easily  answered." 123 -- p. 12  **

Williamson makes no attempt to answer it either.  He does, however, provide references to other authorities who also noticed this.  For example, in his Conclusion he states that:

"The fact that large quantities of  fragments have been found in  localities unassociated with any  Lepidodendron or  Sigillarian stems has led some geologists to 'consider  Stigmaria  as  originally representing  floating stems becoming roots under peculiar circumstances.'" 124

"... and Lesquereux cites  Schimper's authority  for the fact  that a  deposit  in  the Vosges  is  filled  with a  prodigious  quantity  of  fragments  of  Stigmaria ... (and) ... abundant remains or trunks of  Knorria and Lepidodendron" 124 ( pp. 43-44)  **

Lesquereux's own observations were similar: 

"Fragments  of  Stigmaria, trunks, branches and leaves, are generally found embedded in  every kind  of  compound, clay, shales, sandstone, coal, even limestone, in carboniferous  strata  ...  They  are always in  large proportion, far above that of any other remains of coal plants..."  125 **

"All the  geologists  who have examined the distribution of  the  carboniferous measures  and  the composition of  the  strata  have  remarked  the  predominance of Stigmaria in the clay  deposits  which  constitute  the  bottom of  the  coal  beds.  As the remains of Stigmaria are always  found  in  that peculiar kind  of  clay  and also in the intervening  silicious beds  generally called  clay  partings,  without any  fragments  of  Sigillaria, it  has  been supposed that these clay  materials were merely a  kind of  soft mould where the Sigillaria began their  life  by the germination of seeds and there  expanded their  roots, while their trunks growing up did contribute by their woody matter the essential composition formed  above clay beds.  This opinion has an appearance of truth indeed.  But how to explain the  fact that beds  of  fireclay twenty  to thirty feet in thickness are mostly composed of Stigmaria, or filled from the base to the top with remains of  these plants, stems  and leaves, without a  fragment of  Sigillaria ever  found amongst them and  without any coal  above? Roots cannot live independently of trunks  or of aerial plants ..." 125  **


"Large  surfaces of  rocks ...  are  seen  in Pennsylvania  entirely  covered  with stems and branches  of  Stigmaria The  stems, very  long, nearly  the  same  size in their whole length, rarely  forking, crossing one upon another in  all  directions, cover the rocks with their leaves still attached to  them in their original disposition of right angle.  They  have  evidently  the  same  position and  distribution  as during their growth, and there, over the  whole  exposed surface  of  the rocks, an acre or more, nothing  is  seen,  either  in  any  modification of the  size  of  the stems or  in their  direction,  which  might indicate  the rooting  process  or  the axis of  a  trunk. 125 **

"As seen  from  their fragments, the Stigmaria stems are not exactly cylindrical ...  The pith is  thus exposed naked on the under side of the stems, and the leaves come out from the  sides and  upper surfaces only ...  This conformation shows that the stems of  Stigmaria were  floating or expanding at the surface of soft muddy lakes, and independent of the growth of  trees. 125  **

Lesquereux goes on to propose a new theory regarding the peculiar aquatic nature of Stigmaria roots.  It is summarized below:

Whether Lesquereux was correct in his assessment is uncertain.  However one thing does seem to be certain with regard to Stigmaria roots: namely that they are very commonly found as fragments that were  buried while floating in prostrate, oblique and upright positions -- as opposed to in their original positions of growth.

"At the present epoch some kinds of plants  inhabiting the  swamps have  floating stems.  Their mode  of vegetation  is  similar to  that  of  Stigmaria.  Expanding  their loose stems on or below the surface of  the  water,  they  gradually  fill the ditches by their  interlacing branches, and do not bear any  flowering stems as  long as they remain immersed..." 125

"These  plants present  an  illustration  of  the mode  of  growth and nature  of Stigmaria.  The  stems  could  grow independent  for  a considerable length  of time as floating and  sterile, or bear erect  flowering  stems or  trunks  when  the ground was solid enough to support trees." 125

"The  process  of transformation  of  floating sterile stems  passing into trunks bearing roots  in  not easily explainable.  We see, however, ... the same phenomenon  reproduced on a  number of semi-aquatic plants of  the present  time the Lycopods -- the mosses especially. 125

Can Trees Be Buried Upright?  
With regard to trees buried in vertical (i.e. "growth") position, Helder reports the following:

"Evidence that  tree  trunks  sink  in  a  vertical  position, can  be found in the work  of  Fritz,  who studied  the  famous  multiple 'fossil  forests' of  Yellowstone  National  Park  (Geology,  1980,  Vol. 8, pp.  309-313).  The  traditional interpretation of this region  is  that  forests  were  preserved on  top of  other forests with the whole process consuming millions  of   years.  But Fritz concludes that  no such  forests ever  existed Rather, the tree stumps  were carried  by  mud flows  to their final resting place:   'Many  of  the  petrified vertical  stumps  in  the Lamar River Formation  have a wide root system with short, broken  trunks.  Such trees would behave as an irregular clast with the vertical  position being  most  stable and would tend to be deposited right-side-up.'" 126  **

Further  evidence of  this phenomenon is  reported by  Coffin,127 Morris, 128 and Austin.129

Evidence of Marine Influence in the Joggins Strata:
The discovery of marine fossils in the coal-measures of Joggins also suggests that this area was at one time submerged under some form of ocean current.  Lets look closer at the evidence.

Spirorbis is a marine annelid (worm) that lives inside a spirally arranged calcareous tube -- often referred to as a "tubeworm."  It is an extant (i.e. living) species found in oceans throughout the world.   It is not known to inhabit freshwater lakes or rivers. 130 At Joggins, Dawson found Spirorbis fossils in 18 different beds of (Logan's) Division 4 Coals.  They are often found in the same beds with Naiadites (bivalve mollusks) and tiny crustaceans which Dawson refers to as  Cythere (now known as Ostracodes).   Dawson was aware that these tubeworm fossils at Joggins looked just like those living in modern oceans.  Regarding this he stated:

"the result was a ... seam of  coal ... succeeded by other limestones and coals, and  then by a considerable  thickness of  shales and  bituminous  limestones, in which we find  not  only  the  Cythere, but the scales of  small  fishes, bivalve shells  (Naiadites) allied  to the common  mussel,  and a small  whorled  shell (Spirorbis carbonarius) resembling those now found  adhering  to the seaweeds of the shore (the common Spirorbis spirillum)..." 131 **

And: "This  little  shell, which I  described as a Spirorbis as long ago as  1845, is apparently not  specifically distinct from  Microconchus carbonarius  of the British Coal-FieldsIts microscopic structure  is identical with that of modern Spirorbes, and shows that it is a true worm-shell.  It is found throughout the  Coal formation, attached to plants and  to shells of Naiadites, and must have been an inhabitant of  enclosed  lagoons  and  estuaries.  Its occurrence on Sigillariae  has been used as an argument in favour of the opinion that these trees grew in seawater;  but, unfortunately for that conclusion, the Spirorbis is often  found on the inside of the bark, showing that this had become dead and hollow.  Beside this, the same kind of  evidence  would prove that Lepidodendra,  Cordaites, and  ferns  were  marine  plants." 132  **

Dawson's assertion that these annelids inhabited  "closed lagoons and estuaries"  is a possible scenario; however, is it the most plausible?  He also here suggested that for anyone to think otherwise is synonymous to believing that such plants grew under the sea.  This is one more example of his unwillingness to consider other scenarios -- especially when they pointed in a direction he did not want to consider. 

 Dawson's argument rests on the assumption that the Sigillaria on which these annelid fossils are found were entombed in their original growth position, and that their interiors were solid (as opposed to hollow). 133

Are there other possible scenarios that better fit the evidence?  

The fact that such plants are found with Spirorbis attached suggests one of the following:
1. That these plants and trees grew in the sea.
2. That the Spirorbes of Joggins were once freshwater creatures.
3. That the Spirorbes of Joggins lived in the ocean, and that the ocean swept over the land.

Let's look more closely at each of these three possibilities.

The First Scenario requires many different species of (known) land plants to have lived in the ocean.  This view is not taken seriously--at least not with regard to the Coniferous Cordaites and Ferns.  However there is evidence  that both the Sigillaria and Lepidodendrons were not only aquatic, but may have supported what has been termed "Floating Forests."

In brief, the idea that these trees grew in water was first proposed by the French Botanist-Geologist Adolphe Brongniart,  and later espoused by the English Geologist E. W. Binney 134  These authors were of the opinion that such trees (though in water) grew in the same spot where they were entombed.  According to Scheven, it was not until 1870 that the German Botanist Otto Kunze 135  proposed that these trees not only grew in water, but actually floated on the surface.  However, he and his theory were forgotten for over 100 years, until Scheven (another German), who -- after coming to this same conclusion -- discovered Kunzes' work.

The Kunze-Scheven scenario asserts that the semi-hollow Lycopod trees, with their hollow roots, supported large  "Floating Forests," which, in turn, provided a habitat where other (non-aquatic) plants, such as ferns, could thrive.   This would not, however, mean that these trees were submerged under water, but rather simply floating upon its surface.

The Second Scenario: that the Spirorbes of the past were freshwater creatures is possible; however, there is little evidence to support this view -- except the circular argument that the strata of Joggins are freshwater deposits, and therefore, the Spirorbes found there must also have been freshwater organisms.

The Third Scenario: that the ocean swept over the land, requires the least amount of conjecture.  I.E. The Spirorbes found at Joggins look just like modern Spirorbes because they are one in the same species.  The only "problem" with this  is that it strongly suggests that the coal beds of Joggins and Sydney may not have formed in slow-growing peat bogs, but rather as a result of major Continental (or Intercontinental) flooding. It is this author's opinion that this scenario, is by far the most likely.  For more on Spirorbis, see Coffin,136 and Schultze and Chorn. 137

Charles Lyell was perhaps, more than any other, Dawson's mentor.  Lyell also commented on the subject of finding Spirorbis fossils in the Coal strata.   Consider his remarks below:

"When the carboniferous  forests  sank  below high-water  mark, a  species of  Spirorbis or Serpula ... attached itself to the outside of  the  stumps  and stems of  the  erect trees, adhering occasionally even to the interior of  the bark... These hollow upright trees, covered with  innumerable marine annelids, reminded me of a "cane-brake," as it is commonly  called, consisting of  tall reeds, Arundinaria macrosperma, which I  saw in 1846, at the...  extremity of the delta of the Mississippi.  Although these reeds are fresh-water  plants,  they were covered with barnacles, having been killed by an incursion of  salt-water over an extent of many acres, where the sea had  for a season usurped a  space previously  gained  from it  by the river.  Yet the dead reeds, in spite of  this change, remained  standing in the soft  mud, enabling  us  to conceive how easily the larger  Sigillariae, hollow  as  they  were  but supported by strong roots, may have resisted an incursion of the sea. 138 **

Unlike Dawson, Lyell considered Spirorbis to be a marine annelid, and readily acknowledged that its presence was evidence of "an incursion of the sea".

 Agglutinated Foraminifera:  If  these were "river" deposits,  then why do many sections of  this strata have fossils of marine foraminifera in them?  For example, Archer, et. al. state that:

"Some of  the trace fossils  at Joggins have traditionally been  interpreted as  having been  produced in nonmarine  settings... The  traces, however, occur on the surfaces of  siltstone laminae, which exhibit tidal rythmites. This  relationship indicates  marine  influences,  probably  in  an  estuarine  setting..." 139 **

"At Joggins, trace fossils are not common, and those that occur  throughout the study interval do not generally refute the long-standing  interpretations of  a  basin  dominated  by  nonmarine  deposition.  One the  other  hand, the  cooccurrence of  specific  trace fossils and agglutinated  foraminifera within the trace-fossil  bed indicates  that deposition took place in brackish-water, presumable  estuarine conditionsThis... indicates greater  coastal  proximity than had  been previously considered ...  this new information should  facilitate  reinterpretations  of... many additional Carboniferous sections." 139  **

Consider also the findings of Wightman, Scott, Medioli and Gibling with regard to the Sydney Basin-- a setting similar to the coal-measures of Joggins.

"The recent discovery of agglutinated foraminifera in close proximity to coals in the  Carboniferous Sydney Basin of Nova Scotia ...  constitutes the first identification of marine fossils in 150 years of investigation of these coal-fieldsThe find indicates that the coals formed in a coastal setting rather than on flood plains ...  as previously thought. ..." 140 **

Eurypterus: These are extinct arthropods found in Cambrian to Permian strata.  They reach lengths of up to nine feet.  They are (thought to be) related to horseshoe crabs.  Price 141 refers to them as sea-scorpions and  Lacefield as  "giant sea-scorpions" 142  They have been found in the roof strata of Coal- group 8, in Division 4. 143

According to Moore, Lalicker, and Fischer, eurypterids are:

"... not animals  of  the open shallow seas.  Nor are the  sedimentary deposits containing  (eurypterids)  fresh-water  formations, laid  down in lakes  or made  by rivers." 144 **

They go on to state that:

"...eurypterids were spread throughout  large  water  bodies"  that were either too salty  or  not salty enough  for "corals, brachiopods, or  various  other invertebrates which occur... in normal marine environments." 144

And according to Van Nostrand's Scientific Encyclopedia, Eurypterids are:  

"Extinct marine, or estuarine scorpion-like arthropods,  related  to the horseshoe crab." 145 **

Gyracanthus is an extinct elasmobranch fish with round sculpted spines similar to a shark or ray.  It has been found at Joggins in Coal-group 40 in Division 4. 146

Ctenoptychius is a type of ray or shark; it has been found in the coal of Coal-group 22 at the bottom of Division 3 147 and in the roof strata of Coal-group 6 in Division 4; 148  this bed also contains remains of Spirorbis, Cythere, and Naiadites. 149

Selachians are fish from the family of sharks and rays.  Dawson noted that some of the beds at Joggins contain  "teeth of Selachian fishes of considerable size." 150  

And while it is true that finding sharks and rays in the coal measure strata does not (in itself) prove that these creatures lived in the ocean; however, it does add weight to the growing amount data which strongly suggests the presence of a marine influence during the deposition of  (much, if not all, of) this strata.

Ostracodes are tiny crustaceans that look like miniature clams.  Dawson refers to them as 'Cythere'..  According to Copeland 151 Calder, 152  and Tibbert and Scott, 153 the ostracodes in the rock formations of Nova Scotia include a wide variety--some of which are believed to be of marine or estuarine origin.  For example, in this regard Tibbert has said that:

"Recent  reevaluation of microfauna of the  Horton Bluff  Formation, long held to be  solely lacustrine, has revealed the  presence of  a marginal marine ostracod fauna within profundal  lagoonal beds of the basal Blue Beach Member, including species  of the  western  European  genera Copelandela and Carbonita and the more cosmopolitan  Shemonaella (Tibbert 1996)..." 154, 155  **

Echinoderms: According to Moore, Lalicker and Fischer, 156 echinoderms are "exclusively marine invertebrates."  According to Skilliter 157  echinoderms have been found in two different limestone deposits above the Forty Brine coal seam (which is part of the Joggins Formation).

Naiadites: "Naiadites" were first discovered, and named, by John W. Dawson.158  These are bivalve Mollusks similar to clams.  In the literature they are sometimes referred to as Pelecypods or Lamellibranchia.  There are three different species of Naiadites at Joggins.  According to Dawson they are often found in association with the coals.  They are also often found with  "Spirorbis attached."   For example, in a table of the  "Relative Frequency of Occurrence of ... Plants and Animals in the Coals of the South Joggins"  159  Naiadites and Spirorbis occur together in 16 different beds of Division 4 Coals.  When discussing the occurrence of Spirorbis at Joggins, Dawson states that:

"It is found throughout the Coal-formation, attached to plants and  to shells of Naiadites ..." 160 **   

And that:  "... Naiadites, Spirorbis, and  Cythere constantly  occur associated in  the same beds; and the  conclusions as  to  habitat applicable to any one of  these genera must apply to all." 160 **

Dawson goes on to state that Spirorbis shells are often found adhering to Sigillaria and Ferns, and to explain this as follows:  "Spirorbes multiply  fast and grow very  rapidly;  and  these little shells no doubt took  immediate possession of  submerged  vegetation, just  as their modern allies cover fronds of Laminaria and Fucus." 160

Note: Laminaria and Fucus are extant seaweeds found in the ocean. 

Additional information on the habitat of Naiadites comes from an article by Condra and Elias in which they state:

"In  a recent discussion on  Carboniferous  Spirorbis Trueman (1942) observes that these coiled tubular worms  produce deeply marked  impressions on the outer  surfaces  of Naiadites and other pelecypods, to  which they are often attached.   Says Trueman (p. 313) 'When the worm tube breaks or  falls away it leaves a very sharp and  clear mold of  its  position'  and  'no evidence has  been noticed of Spirorbis tubes which  could  be  regarded  as  being underneath the peristracum of  the shell;  he concludes that the sharp impression  is produced not by boring or by etching of the worm but rather  by the normal growth of the  molluscan shell around the surface  of attachment which remains  stationary." 161 **

The fact that Naiadite shells had time to grow around the Spirorbes suggests that they shared the same habitat.  The fact that various species of Naiadites and Spirorbis, along with Curvirimula (another bivalve)  have been found with Echinoderms in the same bed of limestone suggests that this habitat was marine, and that the oceans swept over the land, and buried freshwater, terrestrial, and marine creatures together in the same beds.   In this regard, it is quite likely that the ocean currents came from the West, and were moving in an Easterly direction.  This is suggested by the fact that, as we look at the coals of Ohio, Kentucky and Tennessee we see a much greater association of marine fossils, or marine and fresh water fossils (mixed together) with the coal strata of these areas.  In other words, as the ocean waters moved further Eastward, over the land, fewer and fewer marine fossils are found associated with the strata -- strata that was probably all laid down within a very short time period.

Marine Algae:  According to  Skilliter 162 Dascycladacean algae (a  "marine green algae") has been found in the above- mentioned limestones along with Spirorbis, echinoderms, and Naiadites.

Tidal Influences:  With regard to the "basin-fill of the half grabens, assigned to the Horton Group", a series ranging from 600 to 1500 m in the Minas Basin, to 3000 m in West Cape Breton, Calder says:

"Characteristically, it comprises marginal thick extrabasinal conglomerates (Murphy et al. 1994) and a tripartite basinal stratigraphy of  alluvial  strata above and below intervening  lacustrine  beds (Hamblin  & Rust 1989;  Martel  & Gibling 1996)...  The lacustrine component has  been inferred  by these  authors to represent a  period of  accelerated subsidence during which the basins were underfilled ... Coarsening upward  sedimentary  cycles have been  ascribed to tectonism  (Martel  &  Gibling 1991), but the  lacustrine rocks, which record the effects of  storm conditions ... doubtless  bear  witness  to climactic cyclicity, yet to be described." 163 **
With regard to the laminated shales and heterolithic facies which are "common within the Carboniferous coal measures..." of Nova Scotia, Acher, et al. remark that:
"In general, such facies have traditionally been interpreted as the result of lacustrine and / or floodplain deposition in fluvial-deltaic setting largely because of a lack of benthic marine fossils.  Detailed  sedimentological analyses of some of  these sites,  however,  indicates a  significant degree  of  tidal  influence, which  include... cyclic tidal rythmites and  a  specific assemblage of biogenic structures, both of  which  are similar to  those  forming in modern ... estuaries." 

"... Recognition of these influences requires changes in analogs  away  from the traditional fluvio-deltaic  to tide-affected coastal models. This  change in analogs will  profoundly  influence Carboniferous  paleoenvironmental reconstructions." 164 **

Coal Strata from Europe:  In this regard, it is worth noting that among the various Coal Measure strata from England and Germany, are found differing amounts and varieties of Marine fossils. For example, Bölsche, has said:

"Indeed it turned out that the entire Coal-period strata was full of  sea  animals, but they just never had anything to do with the actual coal  seams and  their closely accompanying strata.  Where ever they came in close proximity to  the coal, it was always as if  the rocks  with  sea  inhabitants  reached out like a stranger over the coal (and) only occasionally  positioned (far)  away  from it or lying under it,  exactly as  if  an  area  was  formerly  an inhabited  seabed  and then no longer, or as if it was again flooded from the sea at times,  approximately in a riparian zone.  It seemed as if there had been two types of  seas at that time: one entirely without animal life which simply  transported  the  coal (seams) and deposited the accompanying strata, -- and a second,  in which sea life bountifully blossomed, and these  (two) admittedly changed positions  in various places  from  time to time, however,  at  the same  time never mixing." 
In Steinkohlenwald
, Bölsche, W., 1914, p. 34.*

Im Steinkohlenwald = In the Coal-forming Forest,
* Translated by author with assistance from Anne Uebbing

But Bölsche was likely talking about the strata of his home land of Germany, which may be more like that of Kentucky, Tennessee, Pennsylvania, Ohio and West Virginia.  In contrast, when discussing the English Coal Measures, Bakewell stated: 

"The attention of the geological student is now required to contemplate a most important and extensive change in the  condition  of  the  globe, -- at least,  of that part of it which forms the subject of the present chapter.  Over the marine rock formations before described, we find a series of strata,  two thousand feet or more in aggregate depth, in which remains of marine animals are extremely rare, but which contain, almost exclusively, the remains of  terrestrial  plants...  Carbon, in the form of coal, constitutes also numerous beds in the  series, varying in thickness from a few inches to thirty feet of more, alternating with beds of sandstone, indurated clay, and shale or schistose clay. The remains of vegetables are distributed in greater or lesser abundance throughout the whole series, which, taken together, are called by miners, in the north, coal measures... marine beds ... are  the  foundation  of  the  series  of coal strata, and also surround them..."  Introduction to Geology, Bakewell, R. 1833. pp. 147-148.

And while Bakewell contends that the Coal Plants grew on "extensive tracts of dry land, containing rivers, marshes, fresh-water lakes, and mountains...", such a scenario was challenged by Binney, who,  claimed that: "Coal plants must have grown in very marine marshes(See Ref. 102) or in "salt water"  and that: "Recent investigations have shown that several of the plants of the Coal period possessed certain anatomical peculiarities, which indicate xerophytic characteristics, and lend support to the view that some at least of the plants grew in seashore swamps." More Letters of Charles Darwin, Vol. II; Letter 553. to J.D. Hooker. [June 2nd, 1847.]  **

Charles Lyell also noted the presence of marine fossils in association with coal seams as follows:  

"Intercalated marine beds in coal. --- Both in the coal-fields of Europe and America the association of fresh, brackish-water, and marine strata with coal seams of terrestrial origin is frequently recognized."  Students Elements of Geology, 1871, pp. 385-386

In light of the information presented, it is the author's contention that the coal measure strata from Nova Scotia is very similar to that of Europe, with similar upright fossil trees, roots and fragments thereof, and that they were likely not deposited by rivers that flooded their banks time and time again, but rather  resulted by numerous incursions by the sea.  The author also questions whether or not any of the upright fossil trees or roots in any of the coal measure strata are the result of in situ burial, but rather believes that such organic remains were transported to their respective locations by a Worldwide Flood.  Whether such organic remains were, before their burial, growing on Land, in Brackish or Marine swamps, or even on surface of the open Ocean is a question that is beyond the scope of this paper, and indeed one which may never be satisfactorily solved. 

Philosophical Bias of Men:
The fact that Dawson didn't publish any drawings of (obvious) drift plants or trees, coupled with his lack of interest in the longest upright (25 and 40 foot) trees, his very selective use of Brown's drawings, the fact that one of his drawings was altered (to perhaps make the strata appear more in situ), his admission of finding coals composed almost entirely of leaves, yet refusal to admit that such beds were (almost certainly) the result of allochthonous (washed in) accumulation, along with his refusal to discuss the (very likely) possibility that this strata may well be the remnants of major Continental flooding are clear indications of his bias.  Consider also the following statement he made with regard to finding evidence for marine influences at Joggins:

The occurrence of marine or brackish-water animals in the roofs of coal beds or even in the coal itself, affords no evidence of subaqueous accumulation, since the same thing occurs in ... modern submarine forests. 165   **

In other words, no amount of (contrary) evidence was going to stand in the way of his declaring the coal seams and upright trees in the Joggins area strata to be the result of multiple "forests " which flourished upon the places of their burial.  With that said, and to be fair to Dawson, it should also be mentioned that this (in situ) interpretation, was the popular view within the "scientific" communities of America and Europe (with the exclusion of France) during his lifetime.  For between 1836 166 and 1923 167 few publications advocated for a Catastrophic (allochthonous) origin for the coal strata, while numerous other publications did.

It is further contended by the author that Lyell, Dawson, Brown, Bell, and many others who were influenced and / or indoctrinated by their beliefs have chosen to ignore the 49 (or so) upright trees that are clearly missing their roots or whose roots are truncated, and instead have chosen to focus on the one tree with the longest roots -- which are themselves, more often than not, also truncated.  Such men have done so, not because of an objective search for the truth, but rather a philosophical search to vindicate the theory of evolution and an old earth.  In other words, a bias which assumes that evolution, from inorganic chemicals (i.e. rocks) to man, really did take place, in spite of strong evidence to the contrary.  For if they were aware of the impossibility of the "odds" of that 1st self-replicating (Information - based) living organism coming into existence via some hypothetical (purely imaginary) "slime-pool," or "ocean vent" they would forever abandon such completely unscientific notions, and admit that there must be an intelligence behind the design of living creatures.  This, of course, would mean that they must also surrender their Priest-like power and give (at least some) credibility to what the Creationists have been saying for years: i.e. that, based on the laws of probability alone, there must be a Creator / God who was quite involved with the creation of life (in all its various forms) on Planet Earth.

The Author's Bias: 
Like Dawson, I also am a Christian.  I believe that God was intimately involved with the Creation of the Universe, the Earth, and all life forms therein.  In fact, due to the (extreme) "difficulties" involved with getting that first single-celled, self-replicating, living organic "machine" started -- along with the massive amount of pre-programming that must have been involved with each of the 100,000 or so species of insects that undergo a complete metamorphosis -- I cannot with a clear conscience accept the totally unscientific, and highly speculative evolutionary theories that are still trying (in vain) to come up with plausible scenarios for how life might have got itself started, and (once started) changed into ever more complex forms over eons of time.  I also no longer believe that the earth is billions of years old, but rather (probably) a lot less.  It also appears that a large portion  of the available evidence supports the concept of a young Earth.  Therefore, when I began this investigation, I was expecting to find much evidence that supported the idea of a global flood, and that  virtually all of the sedimentary strata on earth was laid down during this one event.  For you see if, with ordinary logic and reasoning and a thorough investigation, we do, in fact, conclude that NONE of the upright trees in the coal measure strata at Joggins and Sidney, and  the rest of the world, grew upon the spot of their burial, then it only follows that such remnants were the result of a major intercontinental (i.e. worldwide) flood.

This evidence has been presented here in the hope that others who read it may come to see that it is still possible (from a purely scientific standpoint) to believe in such scenarios as have been clearly described in the book of Genesis.  Additionally, in the opinion of this author, it is quite likely that the great periods of Time which comprise today's Geological Time Chart will (in time) have to be greatly revised, if not entirely abolished.

The Absurd, yet Possible:
The author also openly acknowledges the (almost) absurd story (which is probably a historical account) about Noah and his three sons building a large boat in the middle of a forest for 120 years, and then climbing on-board with their wives and sitting back and watching while every type of animal walked on-board two-by-two (and in some cases seven-by seven).  For apart from Divine intervention such a notion is Preposterous.  However, once we admit that life as we know it, could never have "evolved" without the aid of a Creator, the "absurd" becomes both possible, believable, and (considering the evidence) quite likely. 

Concluding Remarks: 
It is my firm belief that a reevaluation of the widely held autochthonous (growth in situ) view of Coal formation for both the Joggins and Sydney Coal Measures is necessary to account for the data.  The evidence seems to suggest that these coals were formed as the result of massive flooding that swept over the land in Noachian fashion, uprooting virtually all organic material in its path and carrying it for  hundreds, or (perhaps) thousands of miles, where many of these plants and trees were deposited either upright prostrate or inclined positions in relation to the enclosing strata.

In conclusion, Dawson and Lyell were likely wrong in their assertion that the evidence then supported (or now supports) an in situ (growth in place) origin for the Carboniferous coals and the strata with which they are associated.  To the contrary, there is just as much, if not  more and better evidence favoring a catastrophic (i.e. drifted) origin for the coals at Joggins and Sydney.  This evidence seems to suggest that the whole sequence was laid down in rapid succession in a very short period of time, and that the upright, oblique, and prostrate roots, stumps and stems are not in their original places of growth but rather were uprooted and transported by flood waters, and re-deposited in this strata.  This also implies that the "Carboniferous epoch" has little or nothing to do with long periods of time, but rather simply represents the deposition of many layers of strata during (perhaps) a single eustatic (or worldwide) event.

Whether or not the geological community has the courage to realize this is another matter entirely.  I also realize that this is not likely to happen until a number of enterprising students get "permission" from their instructors and the Nova Scotia authorities to conduct more detailed studies of these trees and publish their findings.  However, doing so may (very likely) also be the end of the Geological Time Chart as we have known it for the past 180 years, and also the end of the dogmatic parroting by obedient and faithful evolutionists that the earth is "billions of years old."  For an ancient (billions of years) earth is the last vestige of credibility they have with which to try to convince the naive of the "Boldfaced Lie" (for lack of a better word) that has been propagated to the public during the past 150 years that we somehow, (against all "odds") got here by purely natural causes, apart from the aid of an Intelligent Creator / God.   For anyone who is acquainted with the elementary basics with regard to how living Cells make proteins from the information contained in their DNA -- via the RNA (mobile copy machine) and transfers that information to the Ribosome (card reader / protein factory) which assembles all 20 amino acids into their correct order, knows that such a complex machine could never have "evolved" by chance.  Even if nature had, by some lucky stroke, produced a half-way formed (pre) self-replicating bacterium, such natural processes, could never, in and of themselves, finish that process, but rather only (according to the laws of nature) tear it back down; and no amount of wishful thinking or parroting by believers in "No Creator Allowed" / (so-called) "scientists" will change this.  Also, the very fact that such a multitude of highly complex creatures did spontaneously come into existence is, in itself, strong evidence of a Creator. 


I would also like to acknowledge the works of men and women like Dr. Harold Coffin, Prof. N. A. Rupke,  Dr. Steve Austin, Dr. Margaret Helder, Dr. John Morris, Guy Berthault, Dr. John Calder, Dr. Deborah Skilliter, Prof. Martin Gibling, Dr. Joachim Scheven, John William Dawson, and Richard Brown, without whose works and/or assistance, this paper would not have been possible.  It is also noted that some off the above persons  may not agree with the author's conclusions.        

Copyright, 2002, 2004, 2005, 2006, 2013,  Randy S. Berg;  
Copies and excerpts may be distributed freely for educational purposes. 

Part One 
Polystrate Fossils

Upright Trees In Coal
The Underclays of Joggins 

See Also:

The Age of the Earth: 


Part One: 
Radiometric Dating or Propaganda? 

Part Two: 
Continental Drift for Millions of Years? 

Part Three: 
A few Problems with a Creative Bang 

Part Four: 
Evidence for a Worldwide Flood 

Part Five: 
Evidence for a Young Earth 

Off-Site Links:

Polystrate Fossils 
How Old is the Earth 
Drift Trees from France 

Yellowstone's Fossil Trees 
The Fossil Forests of Yellowstone 
Neyman Challenges Worldwide Flood 
Lamellibranch shells—evidence of catastrophe 
Footprints and Sand 'Dunes' in Grand Canyon Strata
Polystrate  Fossils and the Creation Evolution Controversy 

Home   Comments